Optimal non-dissipative discontinuous Galerkin methods for Maxwell's equations in Drude metamaterials
نویسندگان
چکیده
Abstract. Simulation of electromagnetic wave propagation in metamaterials leads to more complicated time domain Maxwell’s equations than the standard Maxwell’s equations in free space. In this paper, we develop and analyze a non-dissipative discontinuous Galerkin (DG) method for solving the Maxwell’s equations in Drude metamaterials. Previous discontinuous Galerkin methods in the literature for electromagnetic wave propagation in metamaterials were either non-dissipative but sub-optimal, or dissipative and optimal. Our method uses a different and simple choice of numerical fluxes, achieving provable non-dissipative stability and optimal error estimates simultaneously. We prove the stability and optimal error estimates for both semiand fully discrete DG schemes, with the leap-frog time discretization for the fully discrete case. Numerical results are given to demonstrate that the DG method can solve metamaterial Maxwell’s equations effectively.
منابع مشابه
Discontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials on unstructured meshes
In this follow-up work, we extend the discontinuous Galerkin (DG) methods previously developed on rectangular meshes [18] to triangular meshes. The DG schemes in [18] are both optimally convergent and energy conserving. However, as we shall see in the numerical results section, the DG schemes on triangular meshes only have suboptimal convergence rate. We prove the energy conservation and an err...
متن کاملTheoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations
This report focuses on a centered-fluxes discontinuous Galerkin method coupled to a second-order Leap-Frog time scheme for the propagation of electromagnetic waves in dispersive media. After a presentation of the physical phenomenon and the classical dispersion models (particularly the Drude one), a generalized dispersive model is introduced. An a priori stability and convergence study is lead ...
متن کاملA non-conforming discontinuous Galerkin method for solving Maxwell's equations
This paper reviews the main features of a high-order nondissipative discontinuous Galerkin (DG) method recently investigated in [1]-[3] for solving Maxwell’s equations on non-conforming simplex meshes. The proposed method combines a centered approximation for the numerical fluxes at inter element boundaries, with either a secondorder or a fourth-order leap-frog time integration scheme. Moreover...
متن کاملCausal--Path Local Time--Stepping in the Discontinuous Galerkin Method for Maxwell's equations
We introduce a novel local time-stepping technique for marching-in-time algorithms. The technique is denoted as Causal-Path Local Time-Stepping (CPLTS) and it is applied for two time integration techniques: fourth order low–storage explicit Runge–Kutta (LSERK4) and second order Leapfrog (LF2). The CPLTS method is applied to evolve Maxwell’s curl equations using a Discontinuous Galerkin (DG) sch...
متن کاملA spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time domain
In this paper, we present a non-dissipative spatial high-order discontinuous Galerkin method to solve the Maxwell equations in the time domain. The non-intuitive choice of the space of approximation and the basis functions induce an important gain for mass, stiffness and jump matrices in terms of memory. This spatial approximation, combined with a leapfrog scheme in time, leads also to a fast e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 73 شماره
صفحات -
تاریخ انتشار 2017