Optimal non-dissipative discontinuous Galerkin methods for Maxwell's equations in Drude metamaterials

نویسندگان

  • Jichun Li
  • Cengke Shi
  • Chi-Wang Shu
چکیده

Abstract. Simulation of electromagnetic wave propagation in metamaterials leads to more complicated time domain Maxwell’s equations than the standard Maxwell’s equations in free space. In this paper, we develop and analyze a non-dissipative discontinuous Galerkin (DG) method for solving the Maxwell’s equations in Drude metamaterials. Previous discontinuous Galerkin methods in the literature for electromagnetic wave propagation in metamaterials were either non-dissipative but sub-optimal, or dissipative and optimal. Our method uses a different and simple choice of numerical fluxes, achieving provable non-dissipative stability and optimal error estimates simultaneously. We prove the stability and optimal error estimates for both semiand fully discrete DG schemes, with the leap-frog time discretization for the fully discrete case. Numerical results are given to demonstrate that the DG method can solve metamaterial Maxwell’s equations effectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials on unstructured meshes

In this follow-up work, we extend the discontinuous Galerkin (DG) methods previously developed on rectangular meshes [18] to triangular meshes. The DG schemes in [18] are both optimally convergent and energy conserving. However, as we shall see in the numerical results section, the DG schemes on triangular meshes only have suboptimal convergence rate. We prove the energy conservation and an err...

متن کامل

Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations

This report focuses on a centered-fluxes discontinuous Galerkin method coupled to a second-order Leap-Frog time scheme for the propagation of electromagnetic waves in dispersive media. After a presentation of the physical phenomenon and the classical dispersion models (particularly the Drude one), a generalized dispersive model is introduced. An a priori stability and convergence study is lead ...

متن کامل

A non-conforming discontinuous Galerkin method for solving Maxwell's equations

This paper reviews the main features of a high-order nondissipative discontinuous Galerkin (DG) method recently investigated in [1]-[3] for solving Maxwell’s equations on non-conforming simplex meshes. The proposed method combines a centered approximation for the numerical fluxes at inter element boundaries, with either a secondorder or a fourth-order leap-frog time integration scheme. Moreover...

متن کامل

Causal--Path Local Time--Stepping in the Discontinuous Galerkin Method for Maxwell's equations

We introduce a novel local time-stepping technique for marching-in-time algorithms. The technique is denoted as Causal-Path Local Time-Stepping (CPLTS) and it is applied for two time integration techniques: fourth order low–storage explicit Runge–Kutta (LSERK4) and second order Leapfrog (LF2). The CPLTS method is applied to evolve Maxwell’s curl equations using a Discontinuous Galerkin (DG) sch...

متن کامل

A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time domain

In this paper, we present a non-dissipative spatial high-order discontinuous Galerkin method to solve the Maxwell equations in the time domain. The non-intuitive choice of the space of approximation and the basis functions induce an important gain for mass, stiffness and jump matrices in terms of memory. This spatial approximation, combined with a leapfrog scheme in time, leads also to a fast e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2017